Science Advances

advances.sciencemag.org/cgi/content/full/7/7/eabe3245/DC1

Supplementary Materials for

Precise control of synthetic hydrogel network structure via linear, independent synthesis-swelling relationships

N. R. Richbourg, M. Wancura, A. E. Gilchrist, S. Toubbeh, B. A. C. Harley, E. Cosgriff-Hernandez, N. A. Peppas*

*Corresponding author. Email: peppas@che.utexas.edu

Published 12 February 2021, *Sci. Adv.* 7, eabe3245 (2021) DOI: 10.1126/sciadv.abe3245

This PDF file includes:

Tables S1 to S6 Figs. S1 and S2 References

Supplementary Materials

Table S1. Summary of PVA hydrogel formulations.

	Universal Synthesis Variables		Standard, Polymer-Specific Synthesis Variables			
Formulation ID	Initial Polymer Volume Fraction	Expected Degree of Polymerization Between Crosslinks	Concentration (% w/w)	Molar ratio PVA/Glutaraldehyde (mol/mol)	PVA Number Average Molecular Weight (\overline{M}_n ; g/mol)	
PVA-1	0.050	20	6.7%	40	33,884	
PVA-2		30		60	1	
PVA-3	•	40	-	80	-	
PVA-4		50	-	100		
PVA-5		60	-	120		
PVA-6		70		140		
PVA-7	0.075	20	10.3%	40		
PVA-8		30		60		
PVA-9		40		80		
PVA-10		50		100		
PVA-11		60	-	120		
PVA-12		70	-	140		
PVA-13	0.100	20	14.1%	40		
PVA-14	•	30	1	60	1	
PVA-15		40	1	80	-	
PVA-16		50	-	100	1	
PVA-17		60	-	120	-	
PVA-18		70	-	140	-	

	Universal Sy Variables	rnthesis	Standard, Polymer-Specific Synthesis Variables			
Formulation ID	Initial Polymer Volume Fraction	Expected Degree of Polymerization Between Crosslinks	Concentration (% w/w)	PEGDA Number Average Molecular Weight (\overline{M}_n ; g/mol; $n = 6$)	Polydispersity Index	Extent of Functionalization (% of chain-ends)
PEGDA-1	0.087	76	10%	3360 ± 10	1.08 ± 0.01	89%
PEGDA-2		139	-	6110 ± 70	1.07 ± 0.01	88%
PEGDA-3		202		8900 ± 800	1.11 ± 0.02	98%
PEGDA-4		432		19000 ± 400	1.14 ± 0.01	91%
PEGDA-5		589		25900 ± 500	1.21 ± 0.01	87%
PEGDA-6	0.130	76	15%	3360 ± 10	1.08 ± 0.01	89%
PEGDA-7		139		6110 ± 70	1.07 ± 0.01	91%
PEGDA-8		202		8900 ± 800	1.11 ± 0.02	97%
PEGDA-9		432		19000 ± 400	1.14 ± 0.01	91%
PEGDA-10		589		25900 ± 500	1.21 ± 0.01	90%
PEGDA-11	0.175	76	20%	3360 ± 10	1.08 ± 0.01	89%
PEGDA-12		139		6110 ± 70	1.07 ± 0.01	87%
PEGDA-13		202		8900 ± 800	1.11 ± 0.02	98%
PEGDA-14]	432		19000 ± 400	1.14 ± 0.01	91%
PEGDA-15]	589		25900 ± 500	1.21 ± 0.01	85%

Table S2. Summary of PEGDA hydrogel formulations.

Figure S1. Batch comparison for the relationships between synthesis and swelling in PVA and PEGDA hydrogels. Initial polymer volume fraction (φ_0) correlates to the relaxed polymer volume fraction (φ_r) in (**A**) two batches of PVA hydrogels and (**B**) three batches of PEGDA hydrogels. Expected degree of polymerization between crosslinks (N_c) correlates to reference ratio (θ) in (**C**) two batches of PVA hydrogels and (**D**) three batches of PEGDA hydrogels. Solid lines represent the best linear fit for each batch. Error bars represent standard deviations (n = 3 for PVA; n = 4 for PEGDA).

 Table S3. Fit values for each linear relationship.

Linear Relationship	Slope	Intercept	R^2
Fig. 2A: PVA φ_0 vs. φ_r (Global)	1.17 ± 0.03	-0.0062 ± 0.0024	0.933
Fig. 2B: PEGDA φ_0 vs. φ_r (Global)	1.01 ± 0.02	-0.0001 ± 0.0024	0.947
Fig. 2C: PVA N_c vs. θ (Global)	0.0090 ± 0.0002	0.53 ± 0.01	0.945
Fig. 2D: PEGDA N_c vs. θ (Global)	0.0085 ± 0.0002	0.57 ± 0.07	0.913
Fig. 3A: PVA N_c vs. θ (Global)	0.0075 ± 0.0002	0.53 ± 0.02	0.982
Fig. 3B: PAAm N_c vs. θ	0.0109 ± 0.0007	0.69 ± 0.03	0.988
Fig. 3C: PEGDMA N_c vs. θ	0.0052 ± 0.0001	0.61 ± 0.02	0.998
Fig. 4C: PVA N_c vs. θ ($\phi_0 = 0.050$)	0.0058 ± 0.0002	0.30 ± 0.01	0.995
Fig. 4C: PVA N_c vs. θ ($\varphi_0 = 0.075$)	0.0080 ± 0.0003	0.43 ± 0.01	0.995
Fig. 4C: PVA N_c vs. θ ($\varphi_0 = 0.100$)	0.0100 ± 0.0004	0.54 ± 0.02	0.995
Fig. 4D: PEGDA N_c vs. θ ($\varphi_0 = 0.086$)	0.0052 ± 0.0002	0.99 ± 0.06	0.996
Fig. 4D: PEGDA N_c vs. θ ($\phi_0 = 0.130$)	0.0065 ± 0.0003	1.31 ± 0.09	0.995
Fig. 4D: PEGDA N_c vs. θ ($\phi_0 = 0.175$)	0.0080 ± 0.0003	1.57 ± 0.09	0.997
Fig. 6B: GelMA φ₀ vs. φr (Global)	0.64 ± 0.35	0.0206 ± 0.0168	0.094
Fig. 6C: GeIMA N_c vs. θ (Global)	-0.0056 ± 0.0013	2.09 ± 0.10	0.382
Supp. Fig. 1A, Batch 1: PVA φ ₀ vs. φ _r	1.10 ± 0.05	-0.0034 ± 0.0038	0.970
Supp. Fig. 1A, Batch 2: PVA φ_0 vs. φ_r	1.23 ± 0.08	-0.0083 ± 0.0064	0.933
Supp. Fig. 1B, Batch 1: PEGDA φ_0 vs. φ_r	1.02 ± 0.04	-0.0031 ± 0.0059	0.977
Supp. Fig. 1B, Batch 2: PEGDA φ_0 vs. φ_r	1.03 ± 0.06	-0.0032 ± 0.0086	0.953
Supp. Fig. 1B, Batch 3: PEGDA φ ₀ vs. φ _r	0.97 ± 0.05	0.0059 ± 0.0066	0.968
Supp. Fig. 1B, Global: PEGDA φ ₀ vs. φ _r	1.01	-0.0001	
Supp. Fig. 1C, Batch 1: PVA N_c vs. θ	0.0091 ± 0.0004	0.51 ± 0.02	0.973
Supp. Fig. 1C, Batch 2: PVA N_c vs. θ	0.0090 ± 0.0005	0.55 ± 0.02	0.959
Supp. Fig. 1D, Batch 1: PEGDA N_c vs. θ	0.0084 ± 0.0006	0.55 ± 0.22	0.930
Supp. Fig. 1D, Batch 2: PEGDA N_c vs. θ	0.0087 ± 0.0006	0.49 ± 0.21	0.940
Supp. Fig. 1D, Batch 3: PEGDA N_c vs. θ	0.0083 ± 0.0007	0.67 ± 0.26	0.905
Supp. Fig. 1D, Global: PEGDA N _c vs. θ	0.0085	0.57	

System	Symbol	Value	Unit	Ref.
All	V_1	18	mL/mol	(16, 17, 22)
PVA	χ	0.494	N/A	(17, 41)
	\mathcal{C}_{∞}	8.3	N/A	(42, 43)
	\overline{M}_r	44	g/mol	(22, 41)
	$ ho_p$	1.27	g/mL	(17, 22, 41)
	f	4	N/A	(44)
	λ	2	N/A	а
	Ī	0.154	nm	(16, 17, 22, 42)
	\overline{M}_n	33,884	g/mol	b
PEGDA	χ	0.426	N/A	(13, 15, 45)
	\mathcal{C}_{∞}	4	N/A	(15, 46)
	\overline{M}_r	44	g/mol	С
	$ ho_p$	1.18	g/mL	(13, 47, 48)
	f	>100	N/A	(13)
	λ	3	N/A	а
	Ī	0.15	nm	(15, 46, 49)
	γ	0.02-0.15	N/A	d
GelMA	χ	0.49	N/A	(50)
	\mathcal{C}_{∞}	5.3	N/A	(39)
	\overline{M}_r	91.2	g/mol	(14)
	$ ho_p$	1.35	g/mL	(14)
	f	~4	N/A	e
	λ	3	N/A	а
	Ī	0.144	nm	(51)
	\overline{M}_n	62,600	g/mol	(14)

Table S4. Network parameters for PVA, PEGDA, and GelMA hydrogels.

a) Determined based on the repeating unit's chemical structure.

b) Measured by a third-party service. (EAG Laboratories, Maryland Heights, MO)

c) Calculated based on the repeating unit's chemical structure.

d) Calculated based on extent of functionalization data.

e) Assumed based on crosslinking scheme.

System	Parameter	Symbol	Parameter Value	Unit	Ref.
All	Molar volume of the solvent (water)	<i>V</i> ₁	18	mL/mol	(16, 17, 22)
All	Molar volume of the solvent (water)	V_1	18.1	mL/mol	(13, 42)
PVA	Flory's Polymer-Solvent Interaction Parameter	χ	0.490- 0.510	N/A	(22)
PVA	Flory's Polymer-Solvent Interaction Parameter	χ	0.494	N/A	(17, 41)
PVA	Flory's Polymer-Solvent Interaction Parameter	χ	0.495	N/A	(42)
PVA	FPS Interaction Parameter, 0th Order	χo	0.474- 0.481	N/A	(18)
PVA	FPS Interaction Parameter, 1st Order	χ_1	0.387- 0.416	N/A	(<i>18</i>)
PVA	Flory Characteristic Ratio	\mathcal{C}_{∞}	8.9	N/A	(22, 46)
PVA	Flory Characteristic Ratio	\mathcal{C}_{∞}	8.4	N/A	(17)
PVA	Flory Characteristic Ratio	\mathcal{C}_{∞}	8.3	N/A	(42, 43)
PVA	Molecular weight of the repeating unit	\overline{M}_r	44	g/mol	(22, 41)
PVA	Density of the dry polymer	$ ho_d$	1.269	g/mL	(17, 22, 41)
PVA	Junction functionality	f	4	N/A	(44)
PVA	Number of atoms in the repeating unit backbone	λ	2	N/A	а
PVA	Weighted average bond length	Ī	0.154	nm	(16, 17, 22, 42)
PVA	Number average molecular weight of the dry polymer	\overline{M}_n	33,884	g/mol	b
PEGDA	Flory's Polymer-Solvent Interaction Parameter	χ	0.426	N/A	(13, 15, 45)
PEGDA	Flory's Polymer-Solvent Interaction Parameter	χ	0.5	N/A	(52)
PEGDA	Flory's Polymer-Solvent Interaction Parameter	χ	0.5-0.52	N/A	(53)
PEGDA	Flory Characteristic Ratio (PEG) (At Theta Point)	\mathcal{C}_{∞}	4	N/A	(15, 46)
PEGDA	Flory Characteristic Ratio (PEG) (At 140 °C)	\mathcal{C}_{∞}	5.6	N/A	(54)
PEGDA	Molecular weight of the repeating unit	\overline{M}_r	62.07	g/mol	(49)
PEGDA	Molecular weight of the repeating unit	\overline{M}_r	44	g/mol	С
PEGDA	Density of the dry polymer	ρ_d	1.12	g/mL	(15)
PEGDA	Density of the dry polymer	ρ_d	1.07	g/mL	(53)

 Table S5. All literature values considered for network parameters.

PEGDA	Density of the dry polymer	$ ho_d$	1.18	g/mL	(13, 47, 48)
PEGDA	Junction functionality	f	>100	N/A	(13)
PEGDA	Junction functionality	f	?	N/A	е
PEGDA	Number of atoms in the repeating unit backbone	λ	3	N/A	а
PEGDA	C-O bond length	l_{C-O}	0.143	nm	(46, 49)
PEGDA	C-C bond length	l_{C-C}	0.153	nm	(46)
PEGDA	C-C bond length	l_{C-C}	0.154	nm	(49)
PEGDA	Weighted average bond length	Ī	0.15	nm	(15, 46, 49)
PEGDA	Frequency of chain-end defects	γ	0.04-0.12	N/A	d
GelMA	Flory's Polymer-Solvent Interaction Parameter	X	0.49	N/A	(50)
GelMA	Flory's Polymer-Solvent Interaction Parameter	X	0.48	N/A	(55)
GelMA	Flory's Polymer-Solvent Interaction Parameter	X	0.562- 0.639	N/A	(39)
GelMA	Flory's Polymer-Solvent Interaction Parameter	X	0.497	N/A	(56)
GelMA	Flory Characteristic Ratio	\mathcal{C}_{∞}	5.3	N/A	(39)
GelMA	Flory Characteristic Ratio	\mathcal{C}_{∞}	8.26	N/A	(56)
GelMA	Flory Characteristic Ratio	\mathcal{C}_{∞}	8.87	N/A	(14)
GelMA	Average molecular weight of the repeating unit	\overline{M}_r	91.3	g/mol	(39)
GelMA	Average molecular weight of the repeating unit	\overline{M}_r	91.2	g/mol	(14)
GelMA	Average molecular weight of the repeating unit	\overline{M}_r	94.7	g/mol	(56)
GelMA	Density of the dry polymer	$ ho_d$	1.345	g/mL	(57)
GelMA	Density of the dry polymer	$ ho_d$	1.33-1.36	g/mL	(58)
GelMA	Density of the dry polymer	$ ho_d$	1.35	g/mL	(14)
GelMA	Junction functionality	f	~4	N/A	е
GelMA	Number of atoms in the repeating unit backbone	λ	3	N/A	а
GelMA	Ca-C bond length (Ca Carbon has R- group)	$l_{C\alpha-C}$	0.153	nm	(51)
GelMA	C-N bond length	l_{C-N}	0.133	nm	(51)
GelMA	N-Ca bond length	$l_{N-C\alpha}$	0.146	nm	(51)
GelMA	Weighted average bond length	\overline{l}	0.144	nm	(51)
GelMA	Total peptide bond length	\bar{l}_{pep}	0.428	nm	(14)
GelMA	Number average molecular weight of the dry polymer	\overline{M}_n	62600	g/mol	(14)
GelMA	Frequency of Lysine Residues	FoL	0.0286	mol/mol	(14)

a) Determined based on the repeating unit's chemical structure.b) Measured by a third-party service. (EAG Laboratories, Maryland Heights, MO)

- c) Calculated based on the repeating unit's chemical structure.
- d) Calculated based on extent of functionalization data.
- e) Assumed based on crosslinking scheme.

	Universal Synthesis Variables		Standard, Polymer-Specific Synthesis Variables		
Formulation ID	Initial Polymer Volume Fraction	Expected Degree of Polymerization Between Crosslinks	Concentration (% w/w)	Extent of Functionalization (% of amino acids)	GelMA Number Average Molecular Weight (\overline{M}_n ; g/mol)
GelMA-1	0.030	37	4%	0.027	62638
GelMA-2		78		0.013	
GelMA-3	-	100	-	0.010	-
GelMA-4	0.045	37	6%	0.027	
GelMA-5	-	78		0.013	
GelMA-6	-	100	-	0.010	-
GelMA-7	0.061	37	8%	0.027	
GelMA-8		78		0.013	
GelMA-9		100		0.010	

Table S6. Summary of GeIMA hydrogel formulations.

Figure S2. Secondary swollen polymer network model analysis of GelMA Hydrogels. Data were grouped by expected degree of polymerization between crosslinks (N_c) and initial polymer volume fraction (φ_0). Symbols represent predictions based on swelling data, and dotted lines represent predictions based on linear fits of the synthesis-swelling relationships. (**A**) Shear modulus increased with decreasing degree of polymerization between crosslinks. (**B**) Mesh size decreased with degree of polymerization between crosslinks (**C**) Formulations were predicted to fit along a master inverse curve relating shear modulus and mesh size.

REFERENCES AND NOTES

- A. Mandal, J. R. Clegg, A. C. Anselmo, S. Mitragotri, Hydrogels in the clinic. *Bioeng. Transl. Med.* 5, e10158 (2020).
- N. A. Peppas, D. S. Van Blarcom, Hydrogel-based biosensors and sensing devices for drug delivery. J. Control. Release 240, 142–150 (2016).
- S. R. Caliari, J. A. Burdick, A practical guide to hydrogels for cell culture. *Nat. Methods* 13, 405–414 (2016).
- J. Li, D. J. Mooney, Designing hydrogels for controlled drug delivery. *Nat. Rev. Mater.* 1, 16071 (2016).
- 5. D. E. Discher, D. J. Mooney, P. W. Zandstra, Growth factors, matrices, and forces combine and control stem cells. *Science* **324**, 1673–1677 (2009).
- B. P. Mahadik, N. A. K. Bharadwaj, R. H. Ewoldt, B. A. C. Harley, Regulating dynamic signaling between hematopoietic stem cells and niche cells via a hydrogel matrix. *Biomaterials* 125, 54–64 (2017).
- C. Crocini, C. J. Walker, K. S. Anseth, L. A. Leinwand, Three-dimensional encapsulation of adult mouse cardiomyocytes in hydrogels with tunable stiffness. *Prog. Biophys. Mol. Biol.* 154, 71–79 (2020).
- E. Axpe, G. Orive, K. Franze, E. A. Appel, Towards brain-tissue-like biomaterials. *Nat. Commun.* 11, 3423 (2020).
- 9. N. R. Richbourg, N. A. Peppas, The swollen polymer network hypothesis: Quantitative models of hydrogel swelling, stiffness, and solute transport. *Prog. Polym. Sci.* **105**, 101243 (2020).
- M. A. English, L. R. Soenksen, R. V. Gayet, H. de Puig, N. M. Angenent-Mari, A. S. Mao, P. Q. Nguyen, J. J. Collins, Programmable CRISPR-responsive smart materials. *Science* 365, 780–785 (2019).
- J. Li, R. Xing, S. Bai, X. Yan, Recent advances of self-assembling peptide-based hydrogels for biomedical applications. *Soft Matter* 15, 1704–1715 (2019).
- 12. L. J. Macdougall, K. Anseth, Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-*co*-poly(α-hydroxy acid) diacrylate macromers. *Macromolecules* **53**, 2295–2298 (2020).
- 13. J. A. Beamish, J. Zhu, K. Kottke-Marchant, R. E. Marchant, The effects of monoacrylated poly(ethylene glycol) on the properties of poly(ethylene glycol) diacrylate hydrogels used for tissue engineering. J. Biomed. Mater. Res. A 92, 441–450 (2010).

- 14. A. E. Gilchrist, S. Lee, Y. Hu, B. A. C. Harley, Soluble signals and remodeling in a synthetic gelatin-based hematopoietic stem cell niche. *Adv. Healthc. Mater.* **8**, 1900751 (2019).
- A. C. Jimenez-Vergara, J. Lewis, M. S. Hahn, D. J. Munoz-Pinto, An improved correlation to predict molecular weight between crosslinks based on equilibrium degree of swelling of hydrogel networks. *J. Biomed. Mater. Res. B Appl. Biomater.* **106**, 1339–1348 (2018).
- C. T. Reinhart, N. A. Peppas, Solute diffusion in swollen membranes. Part II. Influence of crosslinking on diffusive properties. *J. Membr. Sci.* 18, 227–239 (1984).
- Y. Liu, N. E. Vrana, P. A. Cahill, G. B. McGuinness, Physically crosslinked composite hydrogels of PVA with natural macromolecules: Structure, mechanical properties, and endothelial cell compatibility. *J. Biomed. Mater. Res. B Appl. Biomater.* **90**, 492–502 (2009).
- G. B. McKenna, F. Horkay, Effect of crosslinks on the thermodynamics of poly(vinyl alcohol) hydrogels. *Polymer* 35, 5737–5742 (1994).
- 19. P.-G. De Gennes, Scaling Concepts in Polymer Physics (Cornell Univ. Press, 1979).
- 20. J. Kovac, Modified Gaussian model for rubber elasticity. *Macromolecules* 11, 362–365 (1978).
- N. A. Peppas, H. J. Moynihan, L. M. Lucht, The structure of highly crosslinked poly(2-hydroxyethyl methacrylate) hydrogels. *J. Biomed. Mater. Res.* 19, 397–411 (1985).
- T. Canal, N. A. Peppas, Correlation between mesh size and equilibrium degree of swelling of polymeric networks. *J. Biomed. Mater. Res.* 23, 1183–1193 (1989).
- F. Horkay, A. M. Hecht, E. Geissler, Effect of cross-links on the swelling equation of state: Polyacrylamide hydrogels. *Macromolecules* 22, 2007–2009 (1989).
- L. M. Weber, C. G. Lopez, K. S. Anseth, Effects of PEG hydrogel crosslinking density on protein diffusion and encapsulated islet survival and function. *J. Biomed. Mater. Res. A* 90A, 720–729 (2009).
- 25. H. Zhou, J. Woo, A. M. Cok, M. Wang, B. D. Olsen, J. A. Johnson, Counting primary loops in polymer gels. *Proc. Natl. Acad. Sci. U.S.A.* **109**, 19119–19124 (2012).
- 26. W. Chassé, M. Lang, J.-U. Sommer, K. Saalwächter, Cross-link density estimation of PDMS networks with precise consideration of networks defects. *Macromolecules* **45**, 899–912 (2012).
- D. J. Munoz-Pinto, S. Samavedi, B. Grigoryan, M. S. Hahn, Impact of secondary reactive species on the apparent decoupling of poly(ethylene glycol) diacrylate hydrogel average mesh size and modulus. *Polymer* 77, 227–238 (2015).

- M. B. Browning, T. Wilems, M. Hahn, E. Cosgriff-Hernandez, Compositional control of poly(ethylene glycol) hydrogel modulus independent of mesh size. *J. Biomed. Mater. Res. A* 98A, 268–273 (2011).
- G. M. Cruise, D. S. Scharp, J. A. Hubbell, Characterization of permeability and network structure of interfacially photopolymerized poly(ethylene glycol) diacrylate hydrogels. *Biomaterials* 19, 1287– 1294 (1998).
- 30. C. Cha, S. Y. Kim, L. Cao, H. Kong, Decoupled control of stiffness and permeability with a cellencapsulating poly(ethylene glycol) dimethacrylate hydrogel. *Biomaterials* **31**, 4864–4871 (2010).
- 31. K. Yue, G. Trujillo-de Santiago, M. M. Alvarez, A. Tamayol, N. Annabi, A. Khademhosseini, Synthesis, properties, and biomedical applications of gelatin methacryloyl (GelMA) hydrogels. *Biomaterials* 73, 254–271 (2015).
- A. H. Clark, S. B. Ross-Murphy, Structural and mechanical properties of biopolymer gels, in *Biopolymers* (Advances in Polymer Science, 1987), pp. 57–192.
- P. Sajkiewicz, D. Kolbuk, Electrospinning of gelatin for tissue engineering—Molecular conformation as one of the overlooked problems. *J. Biomater. Sci. Polym. Ed.* 25, 2009–2022 (2014).
- K. Beck, B. Brodsky, Supercoiled protein motifs: The collagen triple-helix and the alpha-helical coiled coil. *J. Struct. Biol.* 122, 17–29 (1998).
- 35. S. Leikin, D. C. Rau, V. A. Parsegian, Temperature-favoured assembly of collagen is driven by hydrophilic not hydrophobic interactions. *Nat. Struct. Biol.* **2**, 205–210 (1995).
- J. L. Gornall, E. M. Terentjev, Helix–coil transition of gelatin: Helical morphology and stability. *Soft Matter* 4, 544–549 (2008).
- A. I. Van Den Bulcke, B. Bogdanov, N. De Rooze, E. H. Schacht, M. Cornelissen, H. Berghmans, Structural and rheological properties of methacrylamide modified gelatin hydrogels. *Biomacromolecules* 1, 31–38 (2000).
- 38. L. Rebers, T. Granse, G. E. M. Tovar, A. Southan, K. Borchers, Physical interactions strengthen chemical gelatin methacryloyl gels. *Gels* **5**, 4 (2019).
- 39. J. A. Deiber, M. L. Ottone, M. V. Piaggio, M. B. Peirotti, Characterization of cross-linked polyampholytic gelatin hydrogels through the rubber elasticity and thermodynamic swelling theories. *Polymer* 50, 6065–6075 (2009).

- 40. S. Pedron, B. A. C. Harley, Impact of the biophysical features of a 3D gelatin microenvironment on glioblastoma malignancy. *J. Biomed. Mater. Res. A* **101**, 3404–3415 (2013).
- 41. N. A. Peppas, S. L. Wright, Drug diffusion and binding in ionizable interpenetrating networks from poly(vinyl alcohol) and poly(acrylic acid). *Eur. J. Pharm. Biopharm.* **46**, 15–29 (1998).
- 42. A. S. Hickey, N. A. Peppas, Mesh size and diffusive characteristics of semicrystalline poly(vinyl alcohol) membranes prepared by freezing/thawing techniques. *J. Membr. Sci.* **107**, 229–237 (1995).
- 43. J. Brandrup, E. H. Immergut, E. A. Grulke, A. Abe, D. R. Bloch, *Polymer Handbook* (Wiley, 1989), vol. 7.
- B. D. Barr-Howell, N. A. Peppas, Importance of junction functionality in highly crosslinked polymers. *Polymer Bull.* 13, 91–96 (1985).
- 45. E. W. Merrill, K. A. Dennison, C. Sung, Partitioning and diffusion of solutes in hydrogels of poly(ethylene oxide). *Biomaterials* **14**, 1117–1126 (1993).
- 46. P. J. Flory, Statistical Mechanics of Chain Molecules (Interscience, 1980).
- H. Lin, T. Kai, B. D. Freeman, S. Kalakkunnath, D. S. Kalika, The effect of cross-linking on gas permeability in cross-linked poly(ethylene glycol diacrylate). *Macromolecules* 38, 8381–8393 (2005).
- 48. S. Lee, X. Tong, F. Yang, The effects of varying poly(ethylene glycol) hydrogel crosslinking density and the crosslinking mechanism on protein accumulation in three-dimensional hydrogels. *Acta Biomater.* 10, 4167–4174 (2014).
- 49. G. S. Offeddu, E. Axpe, B. A. C. Harley, M. L. Oyen, Relationship between permeability and diffusivity in polyethylene glycol hydrogels. *AIP Adv.* **8**, 105006 (2018).
- 50. H. B. Bohidar, S. S. Jena, Kinetics of sol–gel transition in thermoreversible gelation of gelatin. *J. Chem. Phys.* **98**, 8970–8977 (1993).
- R. A. Engh, R. Huber, Accurate bond and angle parameters for x-ray protein structure refinement. *Acta Crystallogr. Sect. A* 47, 392–400 (1991).
- C. Özdemir, A. Güner, Solution thermodynamics of poly(ethylene glycol)/water systems. J. Appl. Polym. Sci. 101, 203–216 (2006).
- 53. U. Akalp, S. Chu, S. C. Skaalure, S. J. Bryant, A. Doostan, F. J. Vernerey, Determination of the polymer-solvent interaction parameter for PEG hydrogels in water: Application of a self learning algorithm. *Polymer* 66, 135–147 (2015).
- 54. P. C. Hiemenz, T. P. Lodge, Polymer Chemistry (CRC Press, 2007).

- 55. I. Pezron, M. Djabourov, J. Leblond, Conformation of gelatin chains in aqueous solutions: 1. A light and small-angle neutron scattering study. *Polymer* **32**, 3201–3210 (1991).
- 56. S. Ma, M. Natoli, X. Liu, M. P. Neubauer, F. M. Watt, A. Fery, W. T. S. Huck, Monodisperse collagen–gelatin beads as potential platforms for 3D cell culturing. *J. Mater. Chem. B* 1, 5128–5136 (2013).
- 57. I. G. Fels, Hydration and density of collagen and gelatin. J. Appl. Polym. Sci. 8, 1813–1824 (1964).
- J. H. Fessler, A. J. Hodge, Ultracentrifugal observation of phase transitions in density gradients. I. The collagen system. The collagen system. J. Mol. Biol. 5, 446–449 (1962).