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Geometrically calculating in-plan mesh size, plane-normalized depth, and mesh 

radius for each junction functionality (4, 6, 8) 

First, the ideal shape of a mesh portal had to be determined from the regular 

polyhedrons (tetrahedron, hexahedron, octahedron. For the tetrahedrons, the shape 

was based on a carbon ring chair conformation, which resulted in adjacent tetrahedrons 

facing each other with a 180° rotation around the normal of their shared plane. 

Hexahedrons and octahedrons could be tessellated without rotations and still form 

perfect repeating network structures (see Fig. 4).  

Second, the ideal plane for each portal was taken by finding the plane that includes the 

midpoints of each chain in the portal. To simplify the structures for a solute passing 

through the portal at the ideal normal angle, mesh sizes were flattened into the plane by 

taking the cosine between the chain and the plane, and the sine was calculated to find 

the effective depth of the portal. For the tetrahedron, the face-edge-face angle is 
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  . For the hexafunctional network, there was no angle, 

so the in-plane mesh size was equal to the mesh size and the depth is zero. For the 

octafunctional network it was a 45° angle, yielding an in-plane mesh size and depth of 
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The resulting 2D structures were a hexagon for tetrafunctional networks and two 

squares. The diameter of an inscribed circle on the hexagon was √             , so it 

was multiplied by the in-plane mesh size and divided by two to find the mesh radius. For 

the two squares, the in-plan mesh size was simply divided by two to find the relevant 

mesh radius. 

 

A priori calculation of mesh size and mesh radius for multi-arm PEG hydrogels 

From the structural parameters of initial polymer volume fraction, degree of 

polymerization between junctions, junction functionality, and frequency of chain-end 

defects, mesh size and mesh radius can be calculated by using equilibrium swelling 

theory and a modified Canal-Peppas equation.[1] 

Equilibrium Swelling Equation: 
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Modified Canal-Peppas Equation: 
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Case-Specific Mesh Radius Calculation: 

   

{
  
 

  
 

   

√ 

 
          

   
 

 
          

√ 

 
          

     

In Eq. 1,    is the molar volume of solvent, 18 mL/mol for water. Polymer specific 

parameters for PEG were used as previously described:[2] 

Symbol Value Unit 
  0.426 N/A 

   4 N/A 

 ̅  44 g/mol 

   1.18 g/mL 

  3 N/A 

  ̅ 0.15 nm 
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In Eq. 1, relaxed polymer volume fraction (  ) was arbitrarily set to 0.10, based on 

previous experiments showing that relaxed polymer volume fraction is equivalent to the 

initial polymer volume fraction in covalently networked, synthetic polymer systems.[2] 

Frequency of chain-end defects was set to 0, and the degree of polymerization between 

junctions was set to 60. Junction functionalities were then set to 4, 6, or 8, and the 

equation was solved for the swollen polymer volume fraction (  ). The results of Eq. 1 

were used to calculate the mesh size ( ) in Eq. 2. Mesh radii were calculated from mesh 

size and junction functionality according to Eq. 3. 
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