Supporting Information

High-Throughput FRAP Analysis of Solute Diffusion in Hydrogels
Nathan R. Richbourg, ${ }^{1}$ \& Nicholas A. Peppas ${ }^{1-4 *}$
${ }^{1}$ Department of Biomedical Engineering, University of Texas, Austin, TX 78712, USA.
${ }^{2}$ McKetta Department of Chemical Engineering, University of Texas, Austin, TX 78712, USA.
${ }^{3}$ Division of Molecular Therapeutics and Drug Delivery, College of Pharmacy, University of Texas, Austin, TX 78712, USA.

4Departments of Surgery and Pediatrics, Dell Medical School, University of Texas, Austin, TX 78712, USA.
*Corresponding Author Contact: peppas@che.utexas.edu

Links to further resources

Digital Object Identifier Link to Figshare (open access) collection of data, code, and protocols:
https://doi.org/10.6084/m9.figshare.c.5516622
DOI Figshare Link to FRAP Batch Analysis MATLAB program:
https://doi.org/10.6084/m9.figshare. 14998635
DOI Figshare Link to protocols for experiments:
https://doi.org/10.6084/m9.figshare. 14998662
DOI Figshare Link to R scripts used to analyze data:
https://doi.org/10.6084/m9.figshare. 14998671
DOI Figshare Link to summary data and GraphPad File used to analyze data:
https://doi.org/10.6084/m9.figshare. 14998674
DOI Figshare Links to batch-analyzed, manually analyzed, solute, swelling, and partition coefficient data:
https://doi.org/10.6084/m9.figshare. 14998644
https://doi.org/10.6084/m9.figshare. 14998650
https://doi.org/10.6084/m9.figshare. 14998659
https://doi.org/10.6084/m9.figshare. 14998668
https://doi.org/10.6084/m9.figshare. 16797673

Table S1. Hydrogel Formulations and Swelling Characteristics

Formulation	Initial Polym. Vol. Frac. $\left(\varphi_{0}\right)$	Deg. Polym. Bet. Jun. $\left(N_{j}\right)$	Jun. Funct. (f)	Freq. ChainEnd Defects $(\gamma)^{*}$	Swollen Polym. Vol. Frac. (φ_{s})	Mesh Size (ξ, nm)	Mesh Radius ($r_{m}, \mathrm{~nm}$)
PVA-M-50-40	0.050	20	4	0.052	0.079	4.6	3.8
PVA-M-50-60	0.050	30	4	0.078	0.066	6.0	4.9
PVA-M-50-80	0.050	40	4	0.104	0.056	7.3	6.0
PVA-M-50-100	0.050	50	4	0.130	0.053	8.4	6.8
PVA-M-50-120	0.050	60	4	0.156	0.049	9.4	7.7
PVA-M-50-140	0.050	70	4	0.182	0.043	10.6	8.7
PVA-M-75-40	0.075	20	4	0.052	0.128	3.9	3.2
PVA-M-75-60	0.075	30	4	0.078	0.105	5.2	4.2
PVA-M-75-80	0.075	40	4	0.104	0.090	6.3	5.1
PVA-M-75-100	0.075	50	4	0.130	0.080	7.3	5.9
PVA-M-75-120	0.075	60	4	0.156	0.074	8.2	6.7
PVA-M-75-140	0.075	70	4	0.182	0.069	9.1	7.4
PVA-M-100-40	0.100	20	4	0.052	0.185	3.5	2.8
PVA-M-100-60	0.100	30	4	0.078	0.135	4.7	3.9
PVA-M-100-80	0.100	40	4	0.104	0.121	5.7	4.6
PVA-M-100-100	0.100	50	4	0.130	0.111	6.5	5.3
PVA-M-100-120	0.100	60	4	0.156	0.099	7.4	6.1
PVA-M-100-140	0.100	70	4	0.182	0.090	8.3	6.8

*Frequency of chain-end defects was calculated from the measured PVA molecular weight ($\mathrm{M}_{\mathrm{N}}=$ $33,900 \mathrm{~g} / \mathrm{mol}, \mathrm{PDI}=1.81$) and synthesis-predicted degree of polymerization between junctions $\left(\mathrm{N}_{\mathrm{j}}\right): \gamma=\frac{f M_{r} N_{j}}{(f-2) M_{n}}$, where f is the junction functionality and M_{r} is the formula weight of the PVA repeating unit ($44 \mathrm{~g} / \mathrm{mol}$).

Table S2. Solute Characteristics

Name	ID	Hydrodynamic Radius (nm)	Stokes-Einstein Diffusivity $\left(\mu \mathrm{m}^{2} \mathrm{~s}^{-1}\right)$	FRAP Diffusivity $\left(\mu \mathrm{m}^{2} \mathrm{~s}^{-1} ; n=3\right)$
Fluorescein	FL00	0.5	489	278 ± 13.5
FITC-dextran, 4 kDa	FD04	1.5	160	142 ± 6.8
FITC-dextran, 20 kDa	FD20	3.3	73	85 ± 14.5
FITC-dextran, 70 kDa	FD70	6.1	40	60 ± 1.7
FITC-PEG, 5 kDa	FP05	2.3	108	114 ± 3.9
FITC-PEG, 20 kDa	FP20	4.9	50	61 ± 0.3
FITC-PEG, 40 kDa	FP40	7.2	34	44 ± 2.6

The hydrodynamic radius of fluorescein was taken from previous reports, ${ }^{1-2}$ and the hydrodynamic radii of the FITC-dextrans and FITC-PEGs was calculated from their nominal molecular weights according to the method of Armstrong et al. ${ }^{3}$

Figure S1. Representative graphs of FRAP experiments that reached equilibrium (A) and did not reach equilibrium (B). Experiments that reach equilibrium also reach an asymptote for the Hankel transform, typically near Hankel transform values of zero. Solute-hydrogel pairings with higher diffusion coefficients were more likely to reach equilibrium within the standard FRAP experiment time. Graphs were produced using the automated FRAP analysis program.

Figure S2. Example of a large deviation between Fit 1 and FRAP experimental data at diffusive equilibrium. The graph was produced using the automated FRAP analysis program.

Figure S3. Comparison of bleaching spot stability in solution and in hydrogels. In the first postbleach frame, the FP20 (20 kDa FITC-PEG) bleach spot is centered in both the solution (A) and in a hydrogel (B). By the $10^{\text {th }}$ post-bleach frame, the bleach spot in solution has drifted toward the bottom-left (C), while the bleach spot in the hydrogel remained centered (D). The rate of insolution bleach spot drift varied between experiments and with different solutes, but bleach spots in hydrogels remained consistently centered, suggesting that negligible convection occurred within the hydrogels.

Partition Coefficient Measurements in Three PVA Hydrogel Formulations

Methods: To further investigate the unusual behavior of PEG solutes in the PVA hydrogels, partition coefficients of five of the seven solutes into three hydrogel formulations were measured. The five solutes were FL00, FP05, FP20, FP40, FD70; lower molecular weight FITC-dextran solutes (FD04, FD20) were not available due to COVID-related backorders. The three hydrogel formulations were ("Lo" $\varphi_{0}=0.050, N_{j}=70$, "Me" $\varphi_{0}=0.075, N_{j}=50$, and " Hi " $\varphi_{0}=0.100, N_{j}=30$. Since the sample material was limited for the "Me" formulation, three samples ($\sim 80 \mathrm{mg}, 5 \mathrm{~mm}$ diameter punch) per solute were used for Lo and Hi hydrogel formulations, but only two samples per solute were used for the Me hydrogel formulations.

First, a serial dilution for each solute was made, establishing a linear relationship between intensity and concentration up to $2 \mu \mathrm{M}$ for each solute. Second, stock solutions of each solute at approximately $5 \mu \mathrm{M}$ were made. Their initial concentrations $\left(C_{0}\right)$ were measured by diluting a small sample of each solution 1:10 to enter the linear intensity-concentration range and measuring intensity in a Cytation 3 spectrophotometer with excitation/emission at $490 / 525 \mathrm{~nm}$. From the intensity data, initial concentrations were back-calculated using the standard curve and a $10 x$ multiplication factor to account for the dilution.

For each solute-hydrogel pairing, hydrogel samples were separately incubated in 1.5 mL black tubes with 1 mL of the solution for 24 hours. After 24 hours, the supernatant was removed from each tube, diluted 1:10, and fluorescently measured to calculate the equilibrium concentration $\left(C_{e}\right)$ as described above. Partition coefficients for each sample were calculated according to the following equation: ${ }^{4}$

$$
K=\frac{C_{h}}{C_{e}}=\frac{V_{s}\left(C_{0}-C_{e}\right)}{V_{h} C_{e}}
$$

Where K is the partition coefficient, C_{h} is the concentration inside the hydrogel, V_{s} is the volume of the solution, and V_{h} is the volume of the hydrogel. Notably, since the concentration within the hydrogels was not measured directly, it is unclear how C_{h} is affected by surface interactions.

Figure S4. Partition coefficients of fluorescent solutes in three PVA hydrogel formulations with low, medium, and high equilibrium polymer concentrations. FL00: Fluorescein, FP05: FITC-PEG, 5 kDa, FP20: FITC-PEG, 20 kDa, FP40: FITC-PEG, 40 kDa , FD70: FITC-dextran, $70 \mathrm{kDa}, \varphi_{0}$: Initial polymer volume fraction, N_{j} : Degree of polymerization between junctions.

References

1. Mustafa, M. B.; Tipton, D. L.; Barkley, M. D.; Russo, P. S.; Blum, F. D., Dye diffusion in isotropic and liquid-crystalline aqueous (hydroxypropyl)cellulose. Macromolecules 1993, 26 (2), 370-378.
2. Chenyakin, Y.; Ullmann, D. A.; Evoy, E.; Renbaum-Wolff, L.; Kamal, S.; Bertram, A. K., Diffusion coefficients of organic molecules in sucrose-water solutions and comparison with Stokes-Einstein predictions. Atmos. Chem. Phys. 2017, 17 (3), 2423-2435.
3. Armstrong, J. K.; Wenby, R. B.; Meiselman, H. J.; Fisher, T. C., The Hydrodynamic Radii of Macromolecules and Their Effect on Red Blood Cell Aggregation. Biophysical Journal 2004, 87 (6), 42594270.
4. Cavallo, A.; Madaghiele, M.; Masullo, U.; Lionetto, M. G.; Sannino, A., Photo-crosslinked poly(ethylene glycol) diacrylate (PEGDA) hydrogels from low molecular weight prepolymer: Swelling and permeation studies. Journal of Applied Polymer Science 2017, 134 (2).
